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Integrable boundary conditions for the Toda lattice 

V E Adlert and I T Habibullinj 
Ufa Institute of Mathematics, Russian Academy of Sciences, Chemyshevsky SIT. 112, 450000 
Ufa, Russia 

Received 9 May 1995 

Abstract. The problem of construction of the boundary conditions for the Toda lattice 
compatible with its higher symmebies is considered. It is demonstrated that this problem is 
reduced to finding the differential constraints consistent with the ZS-AKNS hierarchy. A method 
of their construction is offered based on the Backlund IraosfomaIionr. It is shown that the 
generalized Toda lattices corresponding to the non-exceptional Lie algebras of finite growth cm 
be obtained by imposing one of the four simples1 integrable boundary conditions on both, ends 
of the lattice. This fact allows, in pmicular, the solution of the reduction problem of the series 
A Toda lastices into the series D lattices. Deformations of the found boundary conditions are 
presented which lead to the Painlevd-type equations. 

1. Introduction 

In this paper we consider the boundary conditions for the classical completely integrable 
differential-difference model-the well known Toda lattice 

q;.xx~= exp(qj+l - 4;) - exp(q; - qj-1) - 00 j c +m ( 1 )  
which is compatible with the integrability property. Imposing boundary conditions of the 
form 

4nn = F ( q ~ + i . . . - , ~ 4 w + m )  q N ~ = G ( 4 N - l r  . . - , q N - d  M <.h' (2) 
reduces the infinite-dimensional system (1) to a finite-dimensional one. We require that the 
boundary conditions (2) are consistent with integrability at any choice of parameters M < N 
(for fixed m, n). Thus, the boundary conditions on the left and right ends are assumed to 
be independent from each other; so actually we work with a semi-infinite lattice. 

The compatibility of a boundary condition with the integrability property is understood, 
in the spirit of the symmetry approach, as being consistent with the flows determined by 
higher symmetries of the Toda lattice. (The exact definition is given below, in section 2.) 
Such interpretation was suggested in [l,  21 and has quite'justified itself in the problem 
of description of the integrable boundary conditions for such models, as Harry Dym and 
Korteweg-de Vries~(KdV) equations, multifield systems of the NLs and Burgers type, Volterra 
lattices and others (see [3-51). 

In some cases (for example, for the Burgers equation see [4]) one can prove that 
a boundary condition compatible at least with one higher symmetry of the equation is 
compatible with an infinite series of its symmetries as well, including a certain one, which 
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can easily be specified a priori and consequently may be regarded as a test symmetry. 
Compatibility with the test symmetry is taken as a basis of the preliminary classification of 
the integrable boundary conditions (see section 3). 

The finite-dimensional versions of lattice (11, called generalized Toda lattices, are well 
known in the literature. Namely, the generalized Toda lattice, which is integrable in some 
sense, corresponds to each simple Lie algebra of the finite growth (see e.g. [6, 71). In 
this paper we undertake an attempt to revise the theory of the finite-dimensional integrable 
systems of exponential type from the integrable boundary conditions point of view. For 
example, we demonstrate that the generalized Toda lattices corresponding to the classical 
series of finite-dimensional simple Lie algebras, as well as Kac-Moody algebras, can 
be represented as reductions of the infinite lattice (1) with the boundary conditions (2) 
compatible with its higher symmetries. It should be emphasized that the periodic lattices 
corresponding to the series A, as well as the lattices related to the exceptional Lie algebras, 
remain outside our consideration by virtue of the assumption about independence of the 
boundary conditions on the left and right ends. On the other hand, the approach developed 
in this work makes it possible to also study boundary conditions leading beyond the limits 
of exponential-type systems (see, for example, boundary condition (29) with a complete 
set of parameters). The revealing of the algebraic structures appropriate to such boundary 
conditions is an open problem. 

The article is organized as follows. In section 2 the compatibility criterion of a boundary 
condition with a higher lattice symmetry is formulated. It involves the dual language of 
evolutionary partial differential equations associated with the lattice. In this section we 
also discuss the phenomenon of a degenerate boundary condition, which is characterized by 
increased integrability. 

In section 3 we present a method to consvuct the integrable boundary conditions for 
the Toda lattice which is based on this criterion. Symmetries of the Toda lattice, rewritten 
in the evolutionary form, coincide with the ZS-AKNS hierarchy and the finding of integrable 
boundary conditions is equivalent to the finding of differential constraints compatible with 
the odd members of this hierarchy, in particular, with the system (1 I )  which plays the role 
of the test symmetry. This problem is solved with the help of  the Backlund transformations. 
It is noticed that, by virtue of the small order differential constraints found, system (11) is 
reduced into the integrable scalar equations KdV, mKdV and Calogero-Degasperis equations. 

In section 4 we demonstrate that imposing every possible combination of the four 
simplest boundary conditions found above on the left and right ends of the Toda lattice 
leads to the generalized Toda lattices, corresponding to all infinite series of the finite growth 
Lie algebras (except for the series). Moreover, it is proved that the series D Toda lattices 
can be represented as reductions of the series A lattices. We shall note that although for 
the lattices of the series B and C the connection with the series A is quite obvious and 
well known, for the lattices of the series D this problem remains open?. Proposition 4.1 is 
proven: let the solution of the Toda lattice corresponding to the Lie algebra AZn-, satisfy an 
additional symmetry of the reflection type, then it also sets the solution of the Toda lattice 
corresponding to the Lie algebra D, . 

In section 5 the found boundary conditions are deformed by the transform qj + q j + m  
The new boundary conditions are also integrable, but they are compatible with other 
symmetry sets. We demonstrate that closing lattice (1) by the boundary conditions with 
different values of parameter E on the right and left ends results in equations of the Painlev€ 
type. 

V E Adler and I T Habibullin 
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2. Boundary conditions compatible with higher symmetries 

Let a lattice of the To& type 

q,.xx = f ( q j - ~ , q j . q j + l )  - - o o <  j c + w  

where $ # 0 admits a higher symmetry of the form 

(3) 

4j.i = g ( q j - , , q j - k . x , - . . , q j + k , q j + k . r ) .  (4) 

qo= F(ql,ql,x,qzrq2,x, ..., qm8qm.x) (5 ) 

we shall reduce lattice (3) to a semi-infinite lattice determined on the right half-axis 
j > 0. Everywhere below we assume local analyticity of the functions f , g ,  F .  Notice 
that, generally speaking, for k > 1 the boundary condition (5) is not sufficient to close 
lattice (4). For this purpose in addition to (5) it is necessary to express the variables 
4-1.4-1 . ~ ,  q-2,q-z .*...., q1-k.qi-K.x through the dynamic variables qi.qi .z ,qz,qz.x ..... 
Assuming that variables q0,q- l .  . . . , q1-k also satisfy equation (3). one can easily obtain 
an algorithm of the boundary condition (5) continuation. First of all, differentiating (3, 
one finds an expression for qo.*. Then, solving the equation f ( q - ~ , q o ,  ql) = D:(F) with 
respect to 4-1, one obtains 

Using the boundary condition 

4-1 F(-''(qi,ql , ~ , . . . , q ~ + l , q m + i , ~ ) .  

Further, on each following step one finds q-j = F(-j)(ql ,  ql.x.. . .) from equation 
(1-1) p i ) )  = p ( F ( I - j ) ) ,  

f k j ,  F 3 

Definition. The boundary condition (5) is called degenerate if the following identity holds: 

I 30. Wq-I ,qo ,  41) 

aq-I qo=F 

Obviously, for the degenerate boundary condition the continuation algorithm is not valid. 

Proposition 2.1. Let the boundary condition (5)be degenerate, then F does not depend on 
variables q ~ , ~ ,  42. q2.x,~q33 q ~ ~ ,  . . . (but can depend on 41). 

Proof. Assume that variables ql and F are independent, i.e. F depends on qm or qm-l.x m > 
1. Then identity &(q-1, F , q J  = 0 yields that the function f ( q j - l , g j , q j + l )  does not 

0 

Consequence. Let~the boundary condition (5 )  be not degenerate, then the algorithm of 
continuation given above is correct. 

Pruof. In the identity #-(q-j, F('-j), F@-j ) )  = 0 the functions FcZ-j)(ql,.  . . , q,,,+j-2) 
and F(' - j ) (q l , .  . . , qm+j-I) depend on the different sets of dynamic variables and therefore 
are independent. Hence, from this identity the contradiction follows that the function f in 

0 

Proposition 2.2. Let the boundary condition (5) be degenerate, then it completely closes 
the lattice (4) on the half-axis j > 0. 

Proof. From the degeneracy of the boundary condition (5) it follows that variables 4-1. q-l,x. 
q-2 ,  q-2:x.. . . cannot be expressed through the dynamic variables 41, ql.x, 42, q2.=, . . . of 
the problem (3), (5). Therefore they can be considered as independent variables. From the 

depend on variable qj-] which.contradicts the form of the lattice (3). 

(3) essentially depends on the third argument. 
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condition of commutation of the flows determined by equations (3). (4) in the point j = 1, 
one obtains D r ( f i )  = D:(gl) where the subscript denotes shift on j :  

V E Adler and I T Habibullin 

f, = f ( 4 j - 1 .  q j ,  q j + l )  gj  = g ( q j - k ?  q j - k . r y . .  . v  q j t k ,  q j+k .x)  I 

Expanding this relation one obtains 

where R contains all terms with the second-order partial derivatives of gl. It is easy to 
see that the left-hand side of the last equality does not depend on the variables 4 - k .  4 - k . x .  
therefore the term & e q - k . X  on the right-hand side is equal to 0, under the condition 
(5).  But for k > 1 it is obvious that E l ( s )  # 0, therefore $J-1(5) = 0. The factor & 
is also equal to 0, for otherwise the fust term on the right-hand side of the equality would 
essentially depend on the variable 4-k .  

Thus, under condition (5) the function gl does not depend on q I - k ,  ql-r.x.  Assembling 
factors at independent variables 41-2, q 1 - k . x . .  . . , q - 2 .  q& and repeating the reasoning, 
one gets that $J-I(s) 0, &]p) E 0, j = 1,2,. . . , k- 1, i.e. the right-hand side of the 
equation ql.l = g ( q l - k ,  9 1 - k . x . .  . . , ql+x, ql+r.x) under condition (5)  actually depends only 
on dynamic variables ql ,  q[ .x ,  42, qz.x, . :. . The fact that other equations of the lattice (4) 
for n > 0 do not depend on variables q-j ,q-j .x if qo = F is checked similarly. 0 

Consequence. The degenerate boundaq condition reduces commuting infinite lattices 
(3). (4) into commuting semi-infinite lattices, given on the half-axis j > 0. 

Notice that a similar fact is true for the lattices qj.= = f (qj+l .  q j ,  q j - 1 )  of the Volterra 
type as well. 

Definition. The boundary problem (3), (5) is called compatible with the higher symmetry 
(4), if one of the following conditions is fulfilled: 

(i) boundary condition (5) is degenerate; 
(ii) semi-infinite lattice reduced from (4) by v h e  of (5) and its differential consequences 

obtained by differentiating it with respect to x by virtue of (3) (see above algorithm of 
continuation) commutes with the semi-infinite lattice (3), (5). 

One can associate with the pair of lattices (3), (4) a system of two partial differential 
equations. For this purpose one passes from the standard set of dynamical variables 
qo, qo.x. q*l, q*l i , .  . . to the dynamical set consisting of the variables 40, q1 and their 
derivatives with respect to x. Thus 4-1 and 42 are expressed from the anditions qo.xx = 
f ( q 1 ,  qo, 4-11 and q[.xr = f (q z ,q l ,  40) and so on. Rewriting the lattice (4) in the new 
variables, one comes to a system of evolutionary equations (cf [SI) 

(6) 
q0.r = g + ( q o . q l , q O J 9 q 1 . x .  . . . , q o . x . . l . 4 l . x . . . x )  
q1.r = g - ( q o ~ q l , q o . x , q l . x ,  ..., 4o.x ... x.ql.r . . l) .  

This transformation maps the boundary condition (5) into the differential constraint of the 
form 

(7) 
The following criterion of the boundary condition compatibility with the higher symmetry 
is a direct consequence of the way the system (6) was constructed. 

- 
40 = F ( q l ,  q0.x.  q 1 . x . .  . ., qo.x . ,17  q1.x ... x). 
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Proposition 2.3. In order that the boundary problem (3), (5) be compatible with the 
symmetry (4), it is necessary and sufficient that the differential constraint (7) be consistent 
with the dynamics of the equation (6). 

3. Differential constraints compatible with the ZS-AKNS hierarchy 

Let us rewrite the higher symmetries of the Toda lattice 

(8) qj.rs 

qj.r3 = (9) 
as the systems of partial differential equations, introducing new variables uj = 
expqj+l, u j  = exp(-qj) and expressing qk .qk ,= through derivatives of these variables 
with respect to x owing to the Toda lattice (see [SI). By virtue of the lattice (8) each pair 
of the variables U,. u j  satisfies the ZS-AKNS system 

2 qj.x + exP(qj+i - qj) + W q j  - qj-1) 

+ (Qj.x + qj+t,x) exp(qj+l- 4j) + (3j.z + q j - 1 . x )  exp(qj - qj-1) 

( 1 0, 

(11) 
Other higher symmetries of the Toda lattice also correspond to the higher symmetries from 
2s-AKNS hierarchy. According to proposition 2.3, the finding of a boundary condition of 
the form (5) compatible with some higher symmetry of the Toda lattice is,reduced to the 
finding of a differential constraint of the form (7) compatible with dynamics, determined 
by this symmetry. ,Rewriting this constraint in variables uo, uo and omitting the subscript 0 
for brevity, we come to the following problem. 

Problem. Find the differential constraints of the form 

F(u,  U ,  u i ,  U,, . . . . U X . . l ,  ux...A = 0 

2 - ut* = U,, + 2v U 2 U,% = uxx -!- 2u U 

uh = uxzx + ~ U V U ,  

and by virtue of the lattice (9)-the system of coupled KdV equations 

ut3 = U,,, + ~UUU,. 

(12) 
compatible with the kth symmetry of the ZS-AKNS hierarchy, that is those satisfying the 
identity 

Dtt(F)IF,o -0. (13) 
Let us call the order of the differential constraint (12) the maximum order of derivatives 

with respect to x contained in it. Finding the constraint of the given order compatible with 
a given flow is reduced to directi but rather tedious, calculations. However, it is easy to 
prove that because of skew symmetry of the main part, the system (10) and its even order 
 symmetries do not admit any differential constraint, except trivial ones 

u = o  or u = o  (14) 
which correspond to the boundary conditions exp(ql) = 0 or exp(-qo) = 0. Thus, the 
problem can have a non-trivial solution only for the flows appropriate to the times ta+I. 
Apparently, if the constraint~(l2) is compatible with some odd-order higher symmetry, then 
it is compatible with the system (11) as well. Based on this hypothesis, we shall use the 
system (1,l) as a test symmetry when constructing boundary conditions for the Todalattice. 
The following statements are proven by direct computations. 

Proposition 3.1. The constraint U = P ( u )  is compatible with dynamics of the equation 
(1 1) only the the case when P is a linear function: 

u=(YIJ+p. (15) 
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Proposition 3.2. The differential constraint of the first order is compatible with the system 
(11) if and only if it is of the form ux = a(u, u)u,, where the factor a(u, U) satisfies the 
Hopf equation a, + aa, = 0. 
Remark In essence, this constraint is reduced to the linear constraint from the previous 
proposition. Really, the function a is the first integral of relation ux = au,; assuming a = c( 

and integrating, one obtains (15). 

Proposition 3.3. The differential constkint of the form U = P ( u ,  U,, uxx) compatible with 
the system (1 1) is set by the formula 

V E Adler and I T Habibullin 

where CO. c], cz are arbitrary constants. 
Finding more complex constraints directly along the definition (13) becomes~difficult. 

For further progress we need a method which would allow us to reproduce new examples 
from already found ones. For this purpose it is enough to find operations acting on the 
set of integrable constraints. Two such operations are obvious. Indeed, the system (11) is 
invariant under the transformations 

S,: ii = c u  U =  uIc  c =  constant (17) 
R :  P = u  u = u .  (18) 

Hence rewriting the constraint (12) in the new variables yields the integrable constraint 
again. For example, in (16) it is possible to swap the posittons of U and U. The less obvious 
operation is application of the BackIund (auto-)transfonliations. As is well known (see, 
e.g. [SI) the system (1 1) admits two essentially different Backlund transformations. One of 
them is given by the explicit formula 

- 

(19) 2 2 T : U, = I /u  UI =~uXx -U,/= + U U 
and is equivalent to the shift qj -+ qj+l in the Toda lattice. Substituting expression (19) 
into the constraint (12) imposed on the variables IC,, U] one finds a new constraint on the 
variables U ,  U. In this case the orders of both constraints differ not more than by two. For 
example, from the constraint U, = 1 one obtains (using in addition the reflection R )  the 
constraint (16) with constants CO = CI = 0, cz = 1. 

The second Backlund transformation (more precisely, its ‘x-part’) is of the form 

B,: u , = i i + e ~ u + u ~ O  - = U + pl7+ i?u. (20) 
Differentiation of these relations gives expressions for U and derivatives of U and U of any 
order through U and derivatives of P, ;:-Substituting these expressions into the constraint 
(12), one obtains some relation of the form k g ,  I, 6, . . . , u ~ , . . ~ )  = 0. Eliminating the 
variable U from the equations k = 0 and Ox(&) = 0 one obtains a differential constraint 
for the variables P, U 

- ,  

- ~- m, 5 ,  ... I U.r,..x, U . r A  =-0. 
According to the definition of the BackIund transformation, tho new variables I, U also 
satisfy the system (11). hence the found constraint appears compatible with this system as 
well. We call the described procedure the dressing of the constraint (12). It is easy to check 
that dressing also changes the order of constraint by no more than two. 

ScSd SCd RS,R = S! S,T = TS, S,B, = B,S, RZ = 1 

RTR = T-I 

The indicated transformations generate some group with relations 

(21) 
R B, R = S-1 BIk TB,  = B,T B,  B ,  = B, B, . 
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" I I 
I 

I I 1 

I 
... 

Figure 1. Dressing of the differential consuaints. 

Our hypothesis is that all constraints compatible with the odd flows of the ZS-Ams hierarchy 
form the orbit of two simplest constraints u.=. 1 and U = 0 under action of this goup.  
Notice that for all constraints obtained in such a way the consistence with the odd flows redly 
takes place. It follows from the facts that these flows &e compatible with the constraint 
U = constant and that the transformations (17)<20) act on all hierarchy. The constraints 
obtained as a result of application of several hansfonnations T and Bp to the non-degenerate 
constraint u = 1 are listed in the figure 1 .  Let us comment on the formulat indicated in it. 
Denoting the result of the mth iteration of the Backlund transformation through u(m), u{m) 
one obtains from (20) a lattice 

(22) U,(?) = u(m + 1 )  + p(m)u(m) + u*(m)u(m + 1) 
-v,(m + I) = u(m) + p(m)u(m + 1) + u2(m + l ) u ( m ) .  (23) 

It is obvious that by virtue of the constraint u(0) = 1 the equation (22) at m = 0 tums into ' 

the constraint u(1) + U(]) + p(0) = 0 of the form (15). Notice that variables u(O), u(1) 
satisfy the equations KdV and mKdV 

VI(O) = uxx.r(O) + W O ) M O  u t ( 1 )  = u x x x ( 1 )  - 6 W  + M P ) ) u ( ~ ) v ~ ( ~ )  

respectively, and the equation (23) at m = 0 turns into the Miura map 

-NO) = u,(l) +fi(O)U(l)  + U%) 
between them. On the next step the equation (23) at m = 1 yields 

and, substituting in (22) at m = 1 one obtains, after simple calculations, the constraint (16) 
with constants . .  

CO = 1 c, = -pZ(O) -$(I) c2 =,p(O)p(I) , , 
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written for the variables U@), 142). Notice that using the transformation (17) one can obtain 
constraint (16) with an arbitrary choice of parameters. Variable u(2) satisfies the equation 

V E Adler and I T Habibullin 

Equation (24) can be rewritten in the form of differential substitution 

connecting mKdV and equation (25). Notice, that the point transformation U = tanh y brings 
(U) into the so called exponential Calogero-Degasperis equation [9] 

yr = yrxx - 2 ~ 2  - $((P(I) - , ~ ( o ) ) ~ e ~ r  + ~ 1 )  + cL(0))2e4r - 7 - c ~ ' ~ )  - ~ / L % ) ) Y ~  
Further application of the transformation (20) results into a cumbersome constraint of fourth 
order. It appears, however, that the combination T-'B,(z, gives constraint of the second 
order again. It can conveniently be written in the variables 

2r = U-1(3) - U-1(3) 2 = U-1(3) f U-1(3). 

Omitting rather bulky calculations we give only the answer 

16r2(s: -b P) = (2s,, + PIz 
where 

P = (s - cy)@ - .Yo)(s - .Yl)(S - Cf2) 2.Y = p(0) + p(I) + p(2) nj = p ( j )  - c y .  

Rewriting the system (11) in the new variables and eliminating r by virtue of the constraint 
one finds *at variable s satisfies the elliptic CalogerWDegasperis equation 

also introduced in [91. The differential substitution connecting this equation with equation 
(25) is given by the formula 

(c2 + 2p(2)s - 2 S x ) U Z  + (c1 + p(2Y + 42)u  + c2 + Zp(2)s + 2sx = 0. 

Differential substitutions for the scalar evolution equations are described in detail in the 
literature (see e.g. [lo]). 

4. Boundary conditions for the Toda lattice 

Let us write down the boundary conditions corresponding to the differential constraints 
(14)-(16) found above (certainly the constraint (26) gives some boundary condition as well, 
but we do not need it). Passing to the variables q j  one obtains 

where U, @. CO. CI,  c2 are arbitrary parameters. It should be mentioned. that the boundary 
conditions (27), (28) were found earlier in [ I l l  and [12], respectively. 

It is well known (see, e.g. 16, 7, 131) that each simple Lie algebra of the finite growth 
corresponds to some integrable generalized Toda lattice. The lattices associated with the 
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Lie algebras An- l ,  E,, C, are obtained by imposing the degenerate boundary condition 
exp(-qo) = 0 on the left end of the lattice (1) and boundary conditions (27), (28) of 
particular form on its right end, namely exp(q,+l) = 0, qn+r = 0, qn+l = -4.. 
respectively. Now we shall demonstrate that lattices of the D type correspond to the 
boundary condition of the form (29). The Lie algebra D, corresponds to the lattice 

ql.xs = eq2-qL, 
qj,xx = eql+l-ql - e9J-W 
qn7,,xx = + e-qn)e-q"-I - eq"-l-qn-2 (30) 

It is clear that the boundary condition on the left end is of the form e-qo = 0, i.e. is 
degenerate. In order to bring the last but one eqution of system (30) into the standard form 
we make the change of variables 

Thus the last equation of the system accepts the form (we omit the hat over variables qj) 

j = 2 , .  , , , n - 2 

qn,xx = (e-4" - eq" ) - - .  e 4" 1 

Gj = qj - log2 j = 1, . . . , n - 1 e9" = coshq,. (31) 

Assuming qn.xx = e9"+'-9" - eqfi-9"-I one obtains a boundary condition for the right end of 
the lattice: 

Obviously, up to the shift qo H qn, the formula (32) is a particular case of (29) for 
CO = 1, c1 = c2 = 0. So, the Toda lattice of the type D, is reduced, by use of the change 
of variables (31), to the following finite-dimensional reduction of the Toda lattice (1): 

e-9u = 0 

2 q"J +- 2 sinh qn 
e9"+, = e-qn-I 

(33) 

Now we can represent systems related to the Lie algebras An- , ,  E,, C,, D,, ED,, EA*.-z, 
& - I ,  en-,, CA%-3, (in other words, only the series L'corresponding to the periodic 
Toda lattice and exceptional Lie algebras drop out of our consideration) in the form of the 
problem (l) ,  (2) with boundary conditions of the type (27t(29). Actually in this matter 
only the structure of the beginning and the end of the Lie algebra Coxeter-Dynkin diagram 
is important. The left (right) column of figure 2 contains the boundary conditions on the 
left (right) end of the lattice and the corresponding variants of the beginning (end) of the 
diagram. All possible combinations of the boundary conditions on the left and right ends 
give us the Toda lattices appropriate to all Lie algebras listed above. 

We shall demonstrate now that the series D lattices can be obtained from the series A 
lattices as a result of reflection-type reduction combined with the Backhmd transformation 
(20). For this purpose we need to rewrite the transformations (17)-(20) in the variables 4;: 

s .  c .  q, - q, . +loge 

E, : 

R : ~ q j  = -4i-j T : q; = qj+l 

(34) 
qj.x = e W j  - 4,) + exp(q;+l - ij) + ~ P  l -  qj.1 = exp(ij - qj) + exp(qj - ij-1) + P. 
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-- .;. 40 = -91 I 
Figure 2. Boundary conditions corresponding to the ends of Coxeter-Dynkin diagrams. 

The generalized Toda lattice corresponding to the Lie algebra Am-l is obtained from the 
infinite lattice by imposing two degenerate boundary conditions: 

qm+l  = --oO 

It is easy to check that the formula (34) complemented by the conditions 

40 = qo = +CO &+I = qm+l = -w (36) 
sets the Backlund transfomation for the system (35). Thus the mapping : Q ++ a, 
where Q = (q l ,  ql.., . . . , qm, qm,r) is given by explicit formulae and is convertible. 
Indeed, the relations (34), (36) represent a closed system of algebraic equations relatively 
&, exp(Gj), which can easily be solved recurrently, starting from the equation q l . x  = 
exp(& - q l )  + /L. Notice that the given transformation is an example of integrable discrete 
mapping. It can be interpeted as a finitedimensional reduction of the twice discrete 
lattice induced by transformation (34). For details concerning integrable mappings see, 
for example, [14-161. 

The following statement establishes the connection between lattices of the series A 
and D .  

Proposirion 4.1. t e t  m = 2n and the solution Q of the system (35) satisfy the reduction 
condition Q = L I R T m Q ,  that is $j =-in: - q m + l - j .  Then the new solution Q = BoQ of 
the system (35) possesses the following properties: 

(1) Q = B , ~ R T ~ Q , ;  
(2 )  the first half of the vector 0, that is the vector (&, i j l . x , .  . . , &, &.J. solves the 

lattice (33). 

Proof. Property (1) can easily be proven with the help of relations (21). Further, from 
reduction conditions on q it follows that qa+l = i a  - qn, that is un = -U*. It follows from 
figure 1 that dressing of this constraint by transformation EO yields the constraint of the 
form (16) with constants CO = 1, c1 =.cz = 0 connecting the variables ii,, in. As we have 
already seen this constraint is equivalent to the boundary condition (32). a 

Concluding this section we note that the similar simple connection can be established 
between the type A lattices and the lattices with the boundary condition (29) of general 
form on the right end. The proof of the following proposal does not cause difficulties. 
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Proposition4.2. Let m = 2n+ 1 and the solution Q of the system (35) satisfy the reduction 
condition q j  = -qm+l - j .  Then the new solutions of this system Q = S,B,Q, Q = B,Q 
where c, p, U are arbitrary parameters solve' the Toda lattices with the boundq condition 
exp(-qo) = 0 on the left end and boundary conditions (28), (29) of the general form on 
the right end, respectively. 

It follows from the well known fact on the general solution of the type A,,, lattice (see, 
e.g. [6 ] )  and propositions 4.1 and 4.2 that the general solutions of such lattices can be 
written explicitly as rational functions on the exponents e"x. 

5. Boundary conditions with explicit dependence on 2 

The boundary conditions found above admit some generalization. Notice that the Toda 
lattice (1) is invariant under transformation. 

x ;  li ,=qj+Ex 

or, in the variables U, U 
(37) 

X ; i = eEXU < e-&*u; (38) 
The difference between this transformation and transformations S,, R, T ,  B ,  considered 
earlier is that it does not preserve the higher symmetries of the Toda lattice. For example, 
the system (11) at this change of variables is rewritten as follows: . . ~  

uI3 = u ~ ~ , ~  + ~ U V U ,  - 3&(uXX + 2u2v) + ~E'u, - E ~ U  

u , ~  = U,,, + 6uu& + 3&(uxx + 2u'u) + ~ E ' u ,  + E ~ V .  

. 
. ,  

. .  . 

In general, it is easy to check that change (38) determines some linear transformation in the 
space of symmetries of the ZS-AKNS hierarchy, Boundary conditions.found in the previous 
section are consistent with the odd-order symmetries subspace. lf this subspace were 
invariant under the transformation X then rewriting these boundary conditions in variables 
4, would give nothing new. The presence  of the even-order terms:in the transformed 
symmetries results in, that the transformed boundary conditions contain explicit dependence 
on x .  For example, the formulae (28), (29) are converted into the, formulae 

exp(qd = exp(&x - 40) + B exp(Ex) (39) 

correspondingly. It should be emphasized that new boundary conditions are not worse than 
old ones, but they are compatible with other symmetry sets. On imposiing on both ends of the 
Toda lattice of boundary conditions relevant to the same value &. this symmetry.set passes 
into the symmetries of obtained finitedimensional systems and provides its integrability. 
The situation, however, essentially changes if the. boundary conditions imposed on the 
different ends of the lattice correspond to the different values of parameter E.  It turns out 
that in small dimensions the equations of the PainlevC type arise (compare with [18], where 
the Painlev6 equations arise at quasiperiodic closing of integrable lattices). In the examples 
below the length-I reductions of the Toda lattice are considered. On the left end, without 
loss of generality, we impose boundary conditions of the type (28) or (29) and on the right 
one deformed conditions (39) or (40) at some fixed value of E. (It is clear that the boundary 
condition (27) will not give anything new, since the transformation (37) does not change 
it.) 
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(1) Let us try boundary conditions of the form (28) and (39) at E = 2: 

= ae40 + p e41 = ye4”-40 + sek . 
On the variable q = 90 one obtains the differential equation 

qxx = ye4”+ + 8e2”-q - ore* - peq. 

It is easy to check that the point transformation 
PainlevB equation 

= zy(z), e? = z brings it into the third 

with the values of parameters A = -p,  B = 8, C = -a, D = y. 

on the left end and a boundary condition (39) with E = 1 on the right one: 
(2) Impose the boundary condition of the form (29) with CO = 1 without loss of generality 

On the variable q = qo one obtains the differential equation 

It is easy to check that the point b;ansformation 
PainlevC equation 

= e, ex = z brings it into the fifth 

yzz = (L + -)y; I - - yz + - ( y -  (Ay+ ;) + c; Y + D Y(Y + 1) 
2Y Y-1 z 22 Y-1 

with the values of parameters SA = -CI - 2c2, SB = CI - 2 2 ,  C = 26, D = 2or. 
(3) Finally, consider a combination of boundary conditions of the form (29) and (40) 

(thus, because of small dimension of the system, the left and right ends actually coincide). 
It is easy to prove that from seven parameters contained in these two formulae, three can be 
replaced by any non-zero constants by the use of dilating x ,  shift x and shift q. Therefore 
we may consider boundary conditions 

Solving these equations relatively e¶’, e-q-’ and substituting found values into the formula 
qo.xx = eql-q[’ - equ-q-l, one obtains some second-order differential equation on the variable 
q = 40. One can check that change of variables eYCx) = s, eX = converts it into 
the sixth Painlev6 equation 

I+* 

1 1 
z z - 2  ( I  y y - I  +‘)z y-7“ y z -  (1 -+- 2 2-1 + -). y - ~ z  + 1 y - -  -+- 

with parameters SA = -b-2a, 88 = b -2a ,  SC = -d -2c,  8D = d -2c+4.  
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